Action Profiles

Sean Joyce

Well-Known Member
Been following the BB but am looking for suggested Action Profiles for Boundary/Control and Topo
its been so long since I set mine up would like to update them based on what others are using and having success with.
Also what General profile should be used with multiple constellations on the standard L.S. with T3, spread spectrum radio.
any help is appreciated.
 

Shawn Billings

Shawn Billings
5PLS
On the Triumph-LS:

Make sure that you have the latest versions of software installed.

Make sure that GPS, Glonass, Galileo and Beidou are turned on. Go to Setup and Edit the General Group Profile (top of the screen). Select Advanced > GNSS > Systems & Signals Tracking. Constellations that are on will be white, off will be gray.



On the Triumph-3 / Triumph 1-M:

Make sure that the OAF is up-to-date on the Triumph-3 / Triumph-1M. You can use Base/Rover Setup to update the OAF. With the LS connected to the Internet, connect to the Triumph-3 /Triumph-1M by Bluetooth, then select the button below Start/Stop Base (it has the name of the base and rover). You’ll see an option for Update Options.



Make sure that the firmware is up-to-date on the Triumph-3 / Triumph 1-M. You can use Base/Rover Setup to update the firmware on the Triumph-3 / Triumph 1-M. With the LS connected to the Internet, connect to the Triumph-3 by Bluetooth, then select the button below Start/Stop Base (it has the name of the base and rover). You’ll see an option for Update Firmware. It would also be a good time to update the radio firmware on your Triumph-3. This option is available on the same screen.


In Base/Rover Setup, you need to set your communications to:

Message Format: RTCM 3.2 MSM3 Short

Modulation: D8PSK

All other communication settings are according to your preference.

In the action screen, you’ll need to change the GNSS firmware to one of two multi-constellation firmwares: GPS+GLO+GAL+BDU 6Eng or GPS+GLO+GAL+BDU 2Eng. I believe the 2 engine version to be more robust than the 6 engine version. The 6 engine version divides the constellations by two’s into each engine (Engine 1 = GPS + GLO, Engine 2 = GPS + GAL, etc. ), while the 2 engine version uses three constellations in each engine. Engine 1 has GPS+GLO+GAL and Engine 2 has GLO+GAL+BDU.

If you use the 6 engine version, you can use the same action profiles you used with GPS+GLO (Boundary, Precise Topo, Quick Topo, etc.) If you use the 2 Engine version, you’ll need to make a copy of your favorite profiles and modify them because you only have two engines. So for the Boundary profile, make a copy of it and name the copy “Boundary 2 Eng” or something you can associate with being for the 2 engine firmware. Using a copy, instead of modifying your original, will allow you to use the original in the 6 engine versions. In the Boundary 2 Eng profile you’ll want to set the minimum number of RTK engines to 1 instead of 2 and set the number of engines for validate to 1 instead of 2. The same for Precise Topo. In Quick Topo (if you use it), you’ll want to set the minimum number of engines to 2 instead of 5 (since you don’t have five engines to fix with the 2 engine profile). You will also want to turn off Consistency since it only increments with 2 engines fixed, which can be difficult to obtain in canopy.

You’ll notice that downloading the base data at the end of the session will take a bit longer. That’s because your raw data files are now about twice the size because it includes raw data from two additional constellations. The good news is that DPOS is even more reliable with multi-constellation data than with GPS+Glonass alone. So the files are bigger and download times longer, but the results are much better as well.
 

Shawn Billings

Shawn Billings
5PLS
These recommendations are preliminary. Ultimately the software will be changed to automate these approaches or even better approaches will be discovered and implemented. In any case, users today can enjoy significant gains in efficiency with the Triumph-LS Plus and standard Triumph-LS (2-engine firmware) when multi-constellation data is used. With multi-constellation, I do not use the same approach to verification that I used with GPS+Glonass v6+ when working in canopy. From some testing I've done along with observations from other members of the PLS Team:

Preliminary Verification Observation with Multi-Constellation
RTPK and RTK agreement
points to a good solution. I can't say this is 100.000% correct, but I'd put the odds at 1:10,000 or better that when RTPK and RTK agree that the solution might still be a failure. Ultimately, I anticipate that this will be incorporated in the action profile, but there will need to be some changes to the software to automate this. For now, I use a White Box button for Post-Processing which allows the user to start processing at any time during the RTK observation. The benefit is that you can be processing RTPK at the same time the RTK is still working out the solution. Once the RTPK solution is acquired, you can visually compare it to the RTK solution. If the RTK and RTPK solutions are in close agreement, the likelihood is that the fix is good, even if you only have a handful of RTK epochs.

Multiple RTPK solutions in agreement can also point to a good solution. First, let me clear up what this is NOT. This is not simply pressing the RTPK Start White Box button several times in an observation and getting the same answer. When the White Box is pressed, the processing starts at the beginning of the session and processes up to when the button was pressed. So each time processing is done with the White Box during the collection of a point, the processor is processing some of the same data. This may still be a good indicator of a fix, seeing that each time the White Box button is pressed it gives the same result, but what I'm actually recommending here is having independent RTPK points agree with each other. Eventually, I believe this will be automated in the software as well, but for now, you can collect an RTPK point (even if it doesn't agree with RTK), store the RTPK, then collect another RTPK point and compare. I have seen two back-to-back RTPK sessions agree that were incorrect. Both solutions were 60 seconds in length and the total for both was about 120 seconds. In the environment I was working, I should have allowed more time (more on that below). As a result, Alexey and I recommend acquiring three matching RTPK sessions which should point to a good solution. Of course once obtained the cluster average can be used to merge the results of the three points into one.

Multiple Engines Fixed can point to a good solution. I ran a test in a medium canopy environment a couple of weeks ago with my Triumph-LS Plus. The test was setup such that when two engines fixed a point was stored using a single epoch. The engines were then reset and collection automatically started again. I ran this test for about five hours. There were no bad points stored in this five hour test. The precision wasn't great (horizontally the worst point was 0.2' from the average of the 1400 points collected and vertically the worst was 0.3' from the average), but considering this was only one epoch in a bad environment, I would consider this a great success. More importantly it demonstrates that having two or more engines fixed simultaneously can indicate a good fix. With the Triumph-LS Plus, this seems to be even more reliable than in the standard Triumph-LS with 2-engine firmware, but the rule is useful in the 2-engine firmware also. It appears that while a bad 2-engine fix can occasionally occur with the standard Triumph-LS, this doesn't last very long, perhaps only a few seconds. Currently it is possible to setup the software to watch for two engine fixes by watching the consistency counter (which only increments when two or more engines are fixed). The count need not be very high, I have mine set to require a consistency of 1 (the lowest setting available). What it does not do at the moment is increment if 2 engines fix at different times during the same observation (Engine 1 fixes then later Engine 2 fixes). This may also prove a good fix and be easier to acquire than two simultaneous engines. It is very, very important that with this rule GPS+Glonass+Galileo+Beidou are being used in the engines. I believe the reason this works is that the two engines are using satellites from very different geometries. These different geometries will be affected by multi-path differently as the signals bounce through trees and off of buildings. It's as if you took the shot now and came back later to take the shot again under a different constellation except now you can shoot the point under a different constellation contemporaneously.

Summation at present, when collecting critical points under canopy using the standard Triumph-LS (2-engine firmware) or Triumph-LS Plus with multi-constellation signals, I'm looking for two of the above conditions to pass. Unfortunately, these conditions require more user involvement at present than the old Boundary profile for the standard Triumph-LS with GPS and Glonass only, but reliable results can be obtained much more quickly. Ultimately, I anticipate these approaches (or some more refined version of them) will be implemented in the software, but for now the user must invest himself a bit more than with the earlier versions. So I watch for a consistency greater than 0 and RTPK agreement mostly, or I shoot the point two or more times looking for agreement between RTPK results or between RTPK in one and RTK in another.

A note about RTPK observation times. RTPK observations with multi-constellation data should not exceed six minutes. Per @Alexey Razumovsky:
My RTPK recommendations with regard to environment: open - 5-30 s; low - 1min; medium - 3 min: high - 4 min; extreme - 6 min. No sense to stay more than 6 min.
So at six minutes, store whatever the processor gives and start again. In the example I give above regarding two bad RTPK results agreeing, I was in a medium environment with only 60 second observations. When I tested again with a minimum observation of 180 seconds, I had a much better success rate and no bad solutions that agreed with the next solution. In other words, at three minutes in the medium environment, two agreeable solutions were always correct. These observation times are NOT appropriate for GPS+Glonass data and times will need to increase significantly when the correction data does not include Galileo and Beidou (basically the same as DPOS processing).
 

David M. Simolo

Well-Known Member
Thanks for taking the time Shawn and thanks Adam for jumping in. These types of confirmations are very helpful when protocols are in flux.
 

SynGeo

Member
How do you set up the communication over LTE? On the base side, RTCM 3.2 MSM 4 is available to broadcast. On the Rover side, in the APN/RTN profile, only RTCM 3 is available (in addition to RTCM 2.x, JPS, CMR, etc), but no RTCM 3.2 MSM 4. Is it safe to assume that this combination will still work? I'm running two LS btw.
 

Adam

Well-Known Member
5PLS
How do you set up the communication over LTE? On the base side, RTCM 3.2 MSM 4 is available to broadcast. On the Rover side, in the APN/RTN profile, only RTCM 3 is available (in addition to RTCM 2.x, JPS, CMR, etc), but no RTCM 3.2 MSM 4. Is it safe to assume that this combination will still work? I'm running two LS btw.
It will work fine as long as the base has a static IP sim or jetpack. On the base select RTCM 3.2 MSM 4. On the Rover rtcm 3 is correct.
 

SynGeo

Member
Thanks Adam. I noticed that if I have the base set to the MSM 6 engine, and the rover set to the MSM 2 engine, I get wide satellite coverage on the two engines across 3 different networks. If I run the base with the MSM 2 engine, both engines look identical and only GPS and GLO.
 

Adam

Well-Known Member
5PLS
I'm not sure I understand. 2 or 6 shouldn't matter which one is set for the base.
 

SynGeo

Member
I'm not sure that it does, but I did notice a difference in the satellite composition of the RTK engines. I also ran into a problem with the advanced settings, 120 second reset, which needs to be set to zero or the file won't DPOS. I figured if the sub settings are important, then the selection might have an effect. Do you use two LS? LTE?
 

SynGeo

Member
What is your preferred setup? I've been changing things up and going through some growing pains. Have to write it all down and make myself a guide.
 

Adam

Well-Known Member
5PLS
What is your preferred setup? I've been changing things up and going through some growing pains. Have to write it all down and make myself a guide.
I prefer using TCP when cell service is available. As far as the settings, feel free to call me. I can help you get it going. Do you have a static IP?
 

SynGeo

Member
I have a static IP and for the most part, the system has worked well. We just switched from Javad supplied sim cards, to our own Verizon account. I started reading the forums and playing around with the new features. It has been a bit of trial by fire, but things are starting to work well. I love the LTE. I'll give you a call tomorrow.
 
Top